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Abstract

It is demonstrated that experimental stress–strain data for several types of polymer network under pure shear display an approximately

universal behaviour. The Monte–Carlo network-modelling method of Stepto, Taylor and Cail is extended to treat stress–strain behaviour in

pure shear and its predictions are in good agreement with the experimental data. The predictions of Gaussian network theory are shown to be

seriously in error.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The stress–strain behaviour of elastomers is commonly

investigated in uniaxial extension or compression. Gener-

ally, the experimental stress–strain curves show reductions

in modulus as strain increases and it is possible to reproduce

them using a variety of theoretical and modelling

approaches [1,2]. However, the situation regarding the

interpretation of biaxial stress–strain behaviour is not so

satisfactory, with several authors finding that a variety of

theoretical approaches were unable to predict experimental

stress–strain data for various elastomers [3–6].

A form of biaxial deformation frequently studied is pure

shear, achieved by uniaxial extension with the material

sample held at constant width. If l1 is the deformation ratio

in the (principal) strain direction and l2 and l3 are the

deformation ratios perpendicular to the strain direction then,

for an incompressible material in pure shear,

l2 Z 1 and l3 Z 1=l1: (1)

Pure shear is distinct from simple shear, for which Eqs.

(1) also hold, in that the principal axes (1,2,3) do not rotate

on deformation.
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The present paper demonstrates for the first time that

published experimental stress–strain data determined under

pure shear for natural rubber (NR) [7], poly(vinyl chloride)

(PVC) [5] and poly(ethylene terephthalate) (PET) [6]

display an approximately universal behaviour. This uni-

versal behaviour is compared with the classical predictions

of Gaussian elasticity theory [1,8] and with the predictions

of an extension of the Monte–Carlo (MC) network-

modelling method of Stepto, Taylor and Cail [9–11]. The

MC approach can be regarded as ab initio network

modelling. The only parameters it uses are those of the

rotational-isomeric-state (RIS) model for the individual

network chains. The approach has been used previously to

give quantitative predictions of the uniaxial stress–strain

behaviour of poly(dimethyl siloxane) [9], polyethene (PE)

[10,11] and PET [12], and the stress-optical behaviour of PE

[11,13]. This paper does not discuss the use of generalised

strain–energy functions [1,3,8] as it is concerned with

molecular rather than phenomenological interpretations of

the experimental data.
2. Biaxial deformation of a Gaussian network

This section summarises standard relationships [1,8]

related to the biaxial deformation of a Gaussian network.

The change of Helmholtz energy, DA, on deformation at
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constant volume is

DA ¼ ð1=2ÞXðl2
1 þ l2

2 þ l2
3 K3Þ; (2)

where XZNkT; with N the number of elastic chains in the

network. The condition of constant volume, l1l2l3Z1, also

gives for deformation along the unconstrained axis, 3,

l3 Z
1

l1l2

: (3)

hence,

DA ¼ ð1=2ÞX l2
1 þ l2

2 þ
1

l2
1l

2
2

K3

� �
: (4)

Differentiation of Eq. (4) with respect to l1 and l2, the

deformed lengths of the network along axes 1 and 2, gives

the elastic force, f1, along axis 1 (l2 constant)

f1 Z
vDA

vl1
Z

vDA

vl1

� �
1

lo1
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X

2lo1
2l1 K

2

l2
2

!
1

l3
1

� �
(5)

and the elastic force along axis 2 (l1 constant)
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: (6)

lo1 and lo2 are the undeformed lengths of the network.

The nominal stress along axis 1, s1, is
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X

Vo
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(7)

and the nominal stress along axis 2, s2, is

s2 Z
X

Vo

l2 K
1

l2
1

!
1
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2

� �
ZG l2 K

1

l2
1

!
1

l3
2

� �
; (8)

where Vo is the sample volume and G is the shear modulus,

with

GZ
X

Vo

Z
NkT

Vo

: (9)

The ratio of nominal stresses is

s1

s2

Z
l2ðl

4
1l

2
2 K1Þ

l1ðl
2
1l

4
2 K1Þ

: (10)

The true stresses, t1 and t2, are simply related to the

nominal stresses through the relationships t1Zs1l1 and t2Z
s2l2, giving, from Eqs. (7), (8) and (10),

t1 ZG l
2
1 K
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l2
2
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1
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1

� �
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2 K
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1

l2
2

� �
(11)

and

t1
t2
Z

ðl4
1l

2
2 K1Þ

ðl2
1l

4
2 K1Þ

: (12)

In addition,

t1 K t2 ZGðl2
1 Kl2

2Þ: (13)
The equations discussed so far describe general biaxial

deformation, subject only to the conditions of constant

volume and no stress applied along axis 3. For pure shear,

Eqs. (1) hold and from Eqs. (4), (7), (8), (10), (11–13)

DA ¼ ð1=2ÞX l2
1 þ

1

l2
1

K2

� �
(14)

s1 ZG l1 K
1

l3
1

� �
; s2 ZG 1K

1

l2
1

� �
(15)
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1 K1Þ
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2
1 K1Þ

(16)

t1 ZG l2
1 K

1

l2
1

� �
; t2 ZG 1K

1

l2
1

� �
ðZ s2Þ (17)

t1
t2
Z

ðl4
1 K1Þ

ðl2
1 K1Þ

(18)

t1 K t2 ZGðl2
1 K1Þ (19)

Eqs. (13) and (19), or their extensions based on

generalised strain–energy functions, have been used [3,8]

as bases for discussions and interpretations of biaxial and

pure-shear stress–strain behaviour. However, they have the

disadvantage that a value for G (assuming Gaussian

behaviour is followed) or its generalisation is needed. In

contrast, Eqs. (10), (12), (16) and (18) (or their generalis-

ations) can be used to discuss biaxial and pure-shear

behaviour, to a first approximation independent of the value

of G or its variation with deformation. Eq. (18) has the

further advantage that de l’Hôpital’s rule gives

limðt1=t2Þ
l1/1

Z limð4l3
1=2l1ÞZ 2:

l1/1

(20)

This limiting value of the ratio t1/t2 will hold for

undeformed (bulk) networks that obey the assumptions of a

Gaussian network, namely, random chain orientation and a

probability density distribution function of network chain

end-to end distances (r) of Gaussian form ðfeKr2

Þ for values

of r not near full extension. Hence, the limiting value of 2

can be expected to be of wide validity.
3. Monte–Carlo (MC) network modelling for pure shear

The algorithm for the MC network modelling has been

described previously in relation to uniaxial stress–strain and

stress–optical behaviour [9–12]. Only a summary will be

given here, together with a description of the developments

needed to model network stress–strain behaviour under pure

shear.
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3.1. Calculation and representation of elastic Helmholtz

energy change

In the first stage of the Monte–Carlo (MC) simulation, an

RIS chain model is used to generate the radial end-to-end

distance distribution, W(r), for the network chains of a given

number of skeletal bonds (n) at a given temperature. W(r) is

constructed as a histogram and the corresponding values of

probability density, P(r), are evaluated as W(r)/4pr2,

assuming the random orientation of chains in three

dimensions.

The second stage of the simulation concerns the elastic

behaviour of the network, represented by a sample of

independent, initially randomly oriented individual chains

in a Cartesian laboratory-reference frame (axes 1, 2 and 3)

with one end of each chain fixed at the origin.

A chain, i, with end-to-end distance ro,i, is first chosen in

proportion to W(ro,i). The 1- and 2- co-ordinates of its ‘free’

chain end are chosen randomly, and the 3-component

defined consistent with ro,i. That is,

ro;i Z ðro1;i; ro2;i; ro3;iÞ (21)

with

r2
o;i Z r2

o1;i Cr2
o2;i Cr2

o3;i: (22)

Deformations, using a series of values of l1 along axis 1,

subject to l2Z1 and l3Z1/l1, are made and the deformed

end-to-end distances, rdef, calculated by simple geometry.

The end-to-end distance is allowed to increase only up to its

effective, conformational maximum, r�max, above which

W(r)Z0 according to the sampled W(r). Any values of rdef

in excess of r�max are put equal to r�max, thus limiting r to the

range of values determined by the bond-conformational

energies, consistent with W(r) and automatically introdu-

cing the overall non-affine behaviour of chains in the

network. The value of W(rdef) associated with rdef is

ascertained from W(r), and lnP(rdef) evaluated.

The Helmholtz energy change upon deformation is

assumed to arise solely from the corresponding entropic

change. Hence, for chain i,

DAchain;i=kT Z lnfPðro;iÞ=Pðrdef;iÞg; (23)

The average change per chain at each l1 is calculated as

DA=NkT Z
1

N

XN
iZ1

DAchain;i

Z
1

N

XN
iZ1

lnfPðro;iÞ=Pðrdef;iÞg; (24)

where N is the number of chains in the MC sample (i.e.

network). Typically NZ3 to 5!106.

Generalising Eq. (14), the Helmholtz energy change

accompanying a macroscopic deformation of l1 can be
expressed as

DA=NkT Z s l2
1 C

1

l2
1

K2

� �
: (25)

For Gaussian (affine) networks [1,8], sZ1/2, and a plot

of DA/NkT versus l2
1C1=l2

1K2 for pure shear is linear with

a slope of 1/2. The non-affine chain behaviour that arises

automatically under the chain-deformation scheme means

that s is a function of l1. The function is conveniently

expressed as a polynomial in l1 so that it can be

differentiated analytically to determine the elastic force.

Eq. (25) is analogous to that used previously [9–12] for a

uniaxial deformation l, except that the function multiplying

s was then l2C2/lK3.

The non-affine network chain behaviour that occurs can

be viewed as a kind of orientation effect. Chains in the

relaxed network, whose end-to-end vectors lie close to the

extension axis become conformationally fully extended at

low macroscopic strains, and hence contribute nothing more

to the Helmholtz energy change of the network as

deformation increases further; more of the strain is

effectively ‘taken-up’ by network chains whose end-to-

end vectors lie at ever-increasing angles from the extension

axis. The phenomenon manifests itself as a reduction in the

rate of Helmholtz energy change per chain with increasing

macroscopic deformation.
3.2. Calculation of stress along axis 1

Eq. (25) can be expressed in terms of molar quantities,

with

DA

RTr

1

Vo

Z
s

Mc

l
2
1 C

1

l2
1

K2

� �
; (26)

where r is the density of the network and Mc is the network-

chain molar mass. Differentiation of Eq. (26) with respect to

network length, l1, yields the reduced elastic force, f1/RTr,

with

f1
RTr

1

Vo

Z
1

lo1Mc

2sðl1 K1=l3
1ÞC ðl2

1 C1=l2
1 K2Þ

ds

dl1

� �
:

(27)

The reduced nominal stress, s1/RTr, can then be found

by using the relationship ao
23l

o
1ZVo, where ao

23 is the initial

cross-sectional area perpendicular to axis 1. Thus,

s1

RTr
Z

f1
RTrao

23

Z
1

Mc

2sðl1 K1=l3
1ÞC ðl2

1 C1=l2
1 K2Þ

ds

dl1

� �
(28)
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and the true stress

t1 Z s1l1

Z
1

Mc

2sðl2
1 K1=l2

1ÞC ðl3
1 C1=l1 K2l1Þ

ds

dl1

� �
: (29)
3.3. Calculation of stress along axis 2

Because there is zero deformation of the network along

axis 2, incremental probe deformations of the individual

chains are used to determine directly the rate of change of

Helmholtz energy with deformation and, hence, the elastic

force needed to maintain l2Z1. After deformation along

axis 1, chain i, with undeformed end-to-end vector ro,i (Eqs.

(21) and (22)), has been deformed to

rdef;i Z ðrdef1;i; rdef2;i; rdef3;iÞZ ðro1;il1; ro2;i; ro3;i=l1Þ: (30)

With l1 kept constant, incremental deformation ratios

dlC2 and dlK2 are applied along the 2 axis, with dlC2 (O1)

increasing ro2,i and dlK2 (!1) decreasing ro2,i, to give

rCdef;i Z ðrdef1;i; rdef2;idl
C
2 ; rdef3;i=dl

C
2 Þ (31)

and

rKdef;i Z ðrdef1;i; rdef2;idl
K
2 ; rdef3;i=dl

K
2 Þ: (32)

The incremental changes in rdef2,i are

drþdef2;i ¼ ðdlþ2 K1Þrdef2;i

and

drKdef2;i;¼ ðdlK2 K1Þrdef2;i: (33)

The changes in Helmholtz energy are then evaluated

through the probability density functions with

dC2 ln Pðrdef;iÞZ ln PðrCdef;iÞK ln Pðrdef;iÞ (34)

and

d
K
2 ln Pðrdef;iÞZ ln PðrKdef;iÞK ln Pðrdef;iÞ: (35)

The elastic force exerted by chain i is evaluated using finite

differences, giving

fC2;i

kT
Z

KdC2 ln Pðrdef;iÞ

drCdef2;i

and
fK2;i

kT
Z

KdK2 ln Pðrdef;iÞ

drKdef2;i

; (36)

with the average of fC2;i and fK2;i being taken as the value of the

force

f2;i Z 1=2ðfC2;i C fK2;iÞ: (37)

The average force per chain is then given by the sum over

the MC sample with

f2;chain¼
1

N

XN
i¼1

f2;i (38)

The number of chains per unit volume in the network

equals rNAv/Mc and the number of chains per unit
undeformed area normal to a principal axis equals (rNAv/

Mc)
2/3. Hence, the nominal stress along axis 2, s2, is given

directly by the equation

s2 Z f2;chainðrNAv=McÞ
2=3: (39)

In addition, s2Zt2 as l2Z1.
4. Results and discussion

Fig. 1 presents the ratio of true stresses in pure shear, t1/

t2, plotted versus deformation ratio l1. The experimental

values are derived from published data [5–7] on various

polymers. The prediction of Gaussian network theory, Eq.

(18), is also shown and the results from the present MC

network modelling according to Eqs. (29) and (39). To

within experimental error, the experimental results define an

essentially linear universal relationship and the plot given

by the present MC network modelling is in agreement with

the relationship. For the network modelling, values of dlC2
and dlK2 of 1.04 and 0.96, respectively, were used to give

negligible numerical scatter, and PE chains of 100 bonds at

403 K were chosen because their probability density

function, P(r), and radial distribution function, W(r), were

already available from previous work [10,11]. The universal

behaviour shown in Fig. 1 indicates that the choice of type

of chain was not critical. However, the sensitivity to chain

structure of the relationship between t1/t2 and l1 will be the

subject of future investigations.

It is clear that Gaussian theory is seriously in error. The

essentially quadratic relationship of Eq. (18) gives too

strong a dependence of t1/t2 on l1. However, as expected

(see discussion of Eq. (20)), the limiting value of 2 at l1 is

seen to be consistent with experiment and the MC

simulations. The reason why Gaussian network theory

overestimates the value of t1/t2 at a given l1 can be seen

from a comparison of the elastic Helmholtz energies for

Gaussian and real chains in dependence on chain extension.

Such a comparison is shown in Fig. 2 for PE chains.

The curves for the real chains have larger negative slopes

than the linear Gaussian plots. Such relative behaviour is

true for most types of flexible polymer chains. When

evaluating t2 using the MC modelling and the incremental

deformations dlC2 and dlK2 , the larger slopes result in larger

changes in Helmhotz energy and, hence, larger values of t2
and smaller values of t1/t2 than those predicted assuming

Gaussian behaviour. The continuing increase in negative

slope with chain extension apparent in Fig. 2 also means that

the deviation of the Gaussian values of t1/t2 from the actual

values increases as the networks are deformed. It should be

noted that in the deformation of chains in the determination

of t1 some chains reach full extension and, hence, reduce

stress as l1 increases. In contrast, because chains do not

reach full extension in the determination of t2, the curvature

of the Helmholtz energy plot, as shown in Fig. 2, is the

dominant factor.



Fig. 1. Ratio of true stresses in pure shear, t1/t2, versus l1, the deformation ratio along principal axis 1. Experimental data: PVC [5], NR [7] and PET [6],

prediction according to Gaussian network theory, Eq. (18). Prediction according to MC network modelling, Eqs. (29) and (39), for a PE network of 100-bond

chains at 403 K using the Abe–Jernigan–Flory RIS model [14].
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5. Conclusions

The ratio of experimentally determined principal stresses

of polymer networks in pure shear, t1/t2, is shown to be

approximately universally related to network extension, l1.

MC network modelling gives results that are in agreement

with experiment. In contrast, and for reasons that can be

understood, Gaussian network theory greatly overestimates

the values of t1/t2. However, as expected, the limiting value
Fig. 2. Elastic Helmholtz energy, lnP(r)(ZKDA/kT), versus the square of the en

model and temperaure as in Fig. 1. The number of skeletal bonds, n, in each chain is

Gaussian chain having the same fully-extended length and mean-square end-to-e
of t1/t2Z2 at l1Z1 from Gaussian theory is in agreement

with the results of experiment and the MC modelling.
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